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Preface

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives
to conduct the most promising public interest energy research by partnering with RD&D
entities, including individuals, businesses, utilities, and public or private research institutions.

PIER funding efforts focus on the following RD&D program areas:

¢ Buildings End-Use Energy Efficiency

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

¢ Industrial/Agricultural/Water End-Use Energy Efficiency
e Renewable Energy Technologies

e Transportation

In 2003, the California Energy Commission’s PIER Program established the California Climate
Change Center to document climate change research relevant to the states. This center is a
virtual organization with core research activities at Scripps Institution of Oceanography and the
University of California, Berkeley, complemented by efforts at other research institutions.
Priority research areas defined in PIER’s five-year Climate Change Research Plan are:
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the
economic consequences of both climate change impacts and the efforts designed to reduce
emissions.

The California Climate Change Center Report Series details ongoing center-sponsored
research. As interim project results, the information contained in these reports may change;
authors should be contacted for the most recent project results. By providing ready access to
this timely research, the center seeks to inform the public and expand dissemination of climate
change information, thereby leveraging collaborative efforts and increasing the benefits of this
research to California’s citizens, environment, and economy.

For more information on the PIER Program, please visit the Energy Commission’s website
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164.
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Abstract

We model the interaction of climate-dependent wildfire risk and one spatially explicit
population growth scenario in California to generate measures of changes in wildfire risk to
residential property under different scenarios for future climate. While absolute estimates are
affected by multiple uncertainties, the following conclusions appear robust to those
uncertainties explored: Wildfire risk increases throughout the century in both high emission
(A2) and low emission (B1) climate scenarios. There is little noticeable difference between A2
and B1 Special Report on Emission Scenarios scenarios for the periods 2005-2035 and 2035-2065,
but the higher emission A2 scenario does lead to noticeably higher fire risk in the 2070-2100
period when compared to a Bl climate. Average annual monetary impacts due to home loss
may easily prove to be in the billions of dollars by mid-century.

Keywords: Fire, wildfire, risk, climate, scenario, WUI, wildland-urban interface, spatial
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1.0 Introduction

Wildfires in California routinely threaten people and property, destroy homes, force
evacuations, and result in the death or injury of some citizens and firefighters. As described in
the companion report (Westerling et al. 2009) and previous work, climate change can affect the
size and frequency of wildfires in California, and do so differentially across the state
(Westerling and Bryant 2008, Westerling, Hidalgo et al. 2006, and Lenihan, Drapek et al. 2003).
And while fire poses many hazards, its most direct impact on humans is fundamentally
connected to how people are distributed over the state. Thus, to better create a reasonable
picture of how the California population will be affected by changing wildfire patterns, it is
important to consider both climate-induced changes in wildfire and the interactions of these
changes with growth.

The primary aim of this report is to describe how climate change and human development
patterns over California may interact to lead to differing levels of fire-caused risk to human
residences. In this report, we examine how two climate change scenarios (high emission A2 and
low emission B1) interact with one plausible growth scenario to yield estimates for residential
wildfire risk under a variety of uncertainties. In order to mitigate the impact of uncertainties,
our primary results are in the form of statistics on aggregate statewide relative risk (referenced
to the year 2000), though we also present relative risk distributions mapped over the state of
California, in addition to highly caveated estimates for possible monetary damages related to
housing loss.

In the remainder of the introduction, we discuss the impacts associated with wildfire in present-
day California, including the many types of impacts that are not addressed in this report. We
then provide a brief overview of our general approach to modeling and the outcome measures
we use to present the climate impacts.

1.1. Types of Wildfire Impacts

Wildfire impacts humans and the environment in many ways. The most apparent costs arising
from wildfires are those of fighting the fires, and the cost of the homes and other structures
burned by wildfires that encroach into populated areas. These events can be extreme and
receive much attention - in one week in October 2003 over 3000 homes were destroyed, 26 lives
were lost and 3000 square kilometers were burned (Keeley, Fotheringham et al. 2004,
Westerling et al. 2004). In October 2007, over 350,000 households were evacuated in response to
wildfires in southern California (Reza, Leovy et al. 2007). But there are many other less obvious
impacts, both to humans and also to ecosystems, some of which are listed in Table 1. (See the
California Forestry Board’s California Fire Plan for an extremely thorough attempt at
comprehensively assessing wildfire impacts of all sorts). In this paper we focus only on
quantifying changes in direct damages to homes, and therefore when evaluating our results it is
important to remember that these impacts represent just a fraction of the total impacts from
wildfire. While monetization of many of the impacts listed in Table 1 is difficult, the California
Department of Forestry estimated that, for example, watershed impacts of wildfire, in the form
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of soil erosion and potential required sediment removal from water bodies, may easily average
out to magnitudes on the order $100 per acre burned, possibly even up to thousands of dollars
per acres burned in some cases (California Forestry Board 1996). This translates to at least tens
of millions of dollars of annual impacts from that source alone. In addition, many of the
environmental impacts have human consequences. The health and viewshed impacts of
reduced air quality are readily apparent, but there are other more subtle effects, such as
watershed impacts reducing desired fish populations and reducing power generation ability
from hydroelectric dams.

Table 1. Example types of wildfire impacts

Direct Human Impacts Indirect Impacts
Structures burned/property value lost Watersheds - soil loss, deposits
Suppression expenditures Timber loss

Evacuation costs/lost productivity Habitat disruption

Lives lost and adverse health effects of smoke Species loss

Diminished recreational opportunities and viewsheds Non-native species invasion

Disruption to infrastructure availability

When considering damages, it is important to acknowledge that wildfire is in principle a
natural phenomenon that serves a role in maintaining healthy ecosystems, but human presence
and action combine to make fire both a risk to humans, and also potentially a risk to
ecosystems. This is due to humans causing unnatural patterns of wildfire with intensities or
frequencies outside the range of natural variability. For example, fuel suppression may lead to
higher intensities, and human presence may lead to higher numbers of ignitions and higher
frequencies (Syphard, Radeloff et al. 2007). These changes can impact ecosystems in undesirable
ways that may or may not be proportional to the residential impacts we address here.

1.2. Primary Approach: Aggregate Relative Risk

There is a great deal of uncertainty involved in essentially every aspect of wildfire risk
scenarios. The model-generated data required to produce our results is at the end of a long
chain of cascading uncertainty, thus any individual estimates for a particular year or particular
locality cannot be trusted as a “prediction,” even contingent on the climate and population
scenario.

However, by careful analysis, we can still usefully compare different outcomes, while avoiding
taking stock in the precise values for any point in time. This involves circumventing the two
issues of bias and variance. Bias refers to systematic error in the underlying models that will
tend to routinely lead to misestimation in a certain direction. While there is no flawless solution
to this problem, it can be addressed to some degree by considering relative risk changes, rather



than looking at the absolute estimates. If both estimates are off by a common factor, this will be
cancelled out in the relative comparison.

Second, we can help account for random variation at the small scale by only considering
significant aggregations over space and also over time. In any given time period and locality,
there will be effectively random forces changing the risk by various amounts. But when
considered over large enough aggregations, these variations work to cancel each other out, so
that the percentage error will be lower when considering impacts over all of California than
when considering impacts in a tiny area like the surroundings of a specific town.

While these techniques do not solve all the problems associated with modeling long-term
impacts, they help significantly. Thus our primary outputs of interest will be aggregate
measures of relative risk. For each combination of climate change scenarios and model
uncertainties, we assess the risk summed over all of California relative to the risk in a baseline
year, where the risks being compared represent the product of probability of exposure to a fire
and the value (number of households) exposed to that fire—though due to fire dynamics,
exposed value is less than total value. For the sake of illustration, we do also present some
spatially distributed data, along with plausible estimates of monetary impacts under highly
caveated assumptions.

2.0 Risk Estimation Methods

The fundamental terms that affect our measures of risk due to wildfire are the expected
frequency and size of wildfires, and the population and number of households in areas
potentially affected by wildfires. How they are related to generate true risk is not necessarily
straightforward, and is a function of many other variables as well. In this section, we first
discuss the model-generated data we have available as potential inputs to our own risk
modeling, then discuss a conceptual model of wildfire risk. Lastly, we describe how we
implement a modeling approach that attempts to capture the important relationships with the
data we have available, while minimizing the impact of our missing data and the fundamental
difficulty of modeling fire-human interactions.

2.1. Base Input Data at the 1/8 Degree Scale

Because forces governing human-fire interactions act over many scales (Falk, Miller et al. 2007),
the appropriateness of any given risk modeling technique is also governed by the spatial scale
for which we are considering impacts. In this case, we are constrained by the spatial resolution
of available hydroclimatic data. These are available for gridcells of 1/8-degree latitude and
longitude (a little less than 14 kilometers between north and south boundaries, less between
east and west boundaries). As described in the Westerling et al. companion report (Westerling
et al. 2009), climate change models using A2 and B1 emissions scenarios are downscaled to this
spatial level and used to force hydrologic simulations. The resulting hydroclimatic data are
used to drive statistical models of both the probability of wildfires exceeding arbitrary
thresholds (using nonlinear multinomial logistic regression methods), which are then combined
with extreme value distributions describing the size of burned areas above those thresholds
(using Generalized Pareto Distributions of extremes). Wildfire occurrence and extent is
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originally estimated monthly for 1950 to 2100, though we rely on annualized time-averaged
values for thirty-year windows in generating our risk estimates. The ultimate output of the fire
modeling we utilizing is the expected total burned area in wildfires exceeding the 200 ha
minimum threshold.

To consider the evolving geographic distribution of population and number of households, we
rely on a base case distribution provided by the U.S. Environmental Protection Agency. The
Integrated Climate and Land Use Scenarios (ICLUS) were developed to create thematically
consistent land use scenarios at high resolution across the United States (US EPA 2008). They
link country level population growth assumptions with the SERGOM spatial distribution model
to generate housing density projections at the 100 meter (m) level (Theobald 2005). At the time
of analysis, spatial housing density data was available only for a midrange case, but not for the
A2 and B1 socioeconomic growth conditions. These projections were provided on the 100 m
level (hereafter “pixel”, in contrast with 1/8 degree “gridcell”). The precise spatial distribution
of pixels within 1/8 degree gridcells plays no role in our analysis, though as discussed later we
do retain information about the distribution of pixel values within a gridcell, rather than simply
aggregating their associated values to the gridcell level. Other methods for assessing fire risk do
utilize fine spatial detail to construct buffer zones defining fire risk, under the (justified)
assumption that houses may catch fire due to falling embers that land significant distances from
the true fire perimeter (FRAP 2003). Due to lack of reliable spatial data decades in the future,
our approach is essentially independent of this method, relying instead on density distributions
within the gridcell, which may imply an underestimation of risk.

2.2. Conceptual Model of Fire, Exposure and Risk

Climate change has the potential to affect wildfire patterns through multiple channels. One is its
effect on vegetation patterns—as climate changes, vegetation patterns may change as well, with
plants suited to a specific climate and locale migrating or dying off, and being replaced by
plants more suited to the new climate. The combination of vegetation type and moisture
patterns (also affected by climate) can change fuel build-up and moisture levels, which in turn
lead to different distributions of fire probabilities and fire size.

The distribution of people over the landscape also changes with time. The interaction between
humans, landscape and wildfire risk runs through multiple channels as well, some of which
work to counteract each other. In one sense, development in a given region decreases the
vegetation footprint available for the ignition of wildfires, but human presence may more than
compensate by an increase in human-caused ignitions, where there were only natural ignitions
before. However, the increased presence of humans may also have the effect of decreasing fire
size in the region, through early identification of fires and increased suppression efforts. In
general, the statistical relationship between population density and the human-related “risk of
tire” is some form of inverted U (or even one having multiple maxima), being zero at zero
human presence, and zero at some saturated density, where everything is urban and wildfires
cannot exist. However, the range of shapes possible in between these extremes is not known
and likely highly contingent on many other variables associated with the locality.
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Our model of fire risk accounts for human impacts on wildfire probabilities, and also allows for
humans to act in ways that mitigate their exposure to fire proportionally with the value at risk,
thereby capturing some of the interactions described above. These relationships are shown
conceptually in Figure 1. The first several steps were carried out by other researchers as part of
the California Climate Impacts Assessment. The Special Report on Emissions Scenarios (SRES)
scenarios affect population growth and also emissions. Population growth combined with
assumptions about its spatial allocation yields a spatially explicit population trajectory through
time. As modeled by Westerling et al. (2009) this population distribution, together with climate
change, affects the probability and size of wildfires, both directly and through their joint impact
on vegetation change. The focus of the present paper is on the last two steps: Integrating spatial
population with exposure assumptions to estimate value exposed to loss from wildfire, and
then integrating that exposed value with expected values for area burned by wildfire to
generate estimates of risk.

Population

Emissions
Growth

Climate
Change Spatial Distribution

Population Assumptions

Vegetation Exposure
Change Assumptions

Fire
Probabilities

Figure 1. Conceptual model of climate-impacted fire risk
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As can be seen from Figure 1, the first way in which human presence is allowed to impact fire
probabilities is by incorporating a population term directly into the statistical model of fire
probabilities affected by human population growth. This term is allowed to be nonlinear, and
has the potential to account for both the increase and decrease in fire risk as population goes
from very low to very high density (Syphard, Radeloff et al. 2007).

Human presence also affects fire probabilities through its impact on the available vegetated area
over which fire is allowed to start and burn. The fraction of each gridcell covered by vegetation
also enters the fire probability model directly, and we adjust this fraction depending on the
amount and density of human presence in the gridcell. The precise method by which this
allotment is made is discussed in Appendix 1 of the companion Westerling report (Westerling et
al. 2009), but essentially we use the spatial urbanization projections to identify how much of
each gridcell lies above a certain threshold household density. We then allot that fraction of area
proportionally to the different classes of non-developed, non-water areas remaining in the
gridcell. The thresholds used to define urban are treated as uncertainties in the model, and
affect the variation of our final estimates as described in Section 3.1. Future work will also
explore different vegetation allocation methods as well.

In addition to allowing for human presence to affect the baseline wildfire probabilities, we also
allow that the amount of value exposed to risk may scale negatively as a function of household
density. Here, the concept is that because there exists some density at which an area is urban
and no longer subject to the threat of wildfires, there must be some (statistical, rather than
deterministic) function which relates the value (e.g., number of homes or households) existing in
a given area to the value exposed to the risk—since it is not necessarily the case that all
households in a given area are genuinely at risk for burning due to a wildfire.

These ideas combine into an underlying conceptual model of fire risk for a given gridcell:

RISKgc = p(cgc’ ch’V(H piXCgc)) x E(A)gc X z X (H pixS(H pix))

pixcge

Where p is the probability of a large fire above an arbitrarily specified size, C is climate, P is
population, and V describes the vegetation fraction at the gridcell level as a function of the
household distribution at the pixel level. E(A) denotes the expected burned area conditional on
a large fire occurring, expressed as a fraction of the total non-water area of the gridcell. X is the
household value exposed at the pixel level, which relates value enclosed to a function s(H),
which scales total value in a pixel to the fraction of that value genuinely exposed to risk. The
multiplication by area fraction to generate an estimate of risk involves the assumption that
exposed value is likely to be lost to wildfire in direct proportion to the size of the wildfire
relative to the size of the gridcell. This assumption does not necessarily hold in many cases, but
is made irrelevant in discussions of relative risk. It does play a role in our absolute monetary
estimates described later.

Components of the fire-estimation methodology are rigorously detailed in Preisler and
Westerling (2007) and Holmes, Hugget and Westerling (2008). Here we focus on the estimation
of the value-exposed component. The formalized value-exposed model presented here is not
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based on preexisting work, but is designed specifically for this study in order to quantify the
qualitative relationships documented in the literature discussed above. We consider the value
exposed to wildfire risk within a gridcell to be a function of the value existing within the
gridcell, and also a function of how exposure to fire decreases with increasing household
density. In doing this, we do not take into account the explicit spatial location of household
distributions at the 100 m level, but we do utilize information about the distribution of values
associated with the 100 m pixels in each gridcell. That is, we perform our exposure scaling at the
100 m level, and then aggregate the exposure-adjusted values to the 1/8 degree level, rather than
tirst aggregating value enclosed to the 1/8 degree level and then applying the scaling function.
The rationale behind this ordering is that protective action against wildfire is more accurately
described as taking place at the 100 m level, rather than the ~10 kilometer level. It is likely that
the true scale of relevance lies somewhere in between, and future work may explore different
spatial scales of aggregation, but such exploration was not undertaken for this project.

The form of the exposure scaling function itself is unknown to us, however we assume it to fall
within an envelope of possibilities, and explore the impact of these assumptions. The effect of
its precise form should be somewhat diminished in our consideration of relative risk, though it
does play a larger role in our analysis on absolute values. To capture a suitable variation in
functional form we choose a function satisfying x* + y* =1, and allow k to vary. Here x is the ratio
of the household density in a 100 m pixel to the “threshold density” above which an area is
considered too urban to be subject to wildfires, and y is the fraction by which the existing value
is scaled. As can be seen in Figure 2, high values of k imply that not much scaling happens until
close to the threshold, while low values of k (below one) imply more drastic scaling even with
low densities. Additionally, to the extent that the fire probability model sufficiently accounts for
human presence, it may or may not be necessary to normalize these scaling adjustments so that
total probability is preserved in the gridcell. In order to address this possibility, we introduce as
another uncertainty a normalization factor in which the scaled values are multiplied by the
reciprocal of the area under the scaling curve. Additional discussion of this rescaling function is
provided in the appendix.

The full functional form for our value exposed to fire in a gridcell is then:

3 (H e As(d, k)™ Jmax(s(d, k),0)

pixcge

Where A is the area under the scaling function s(d,k) equal to:

d,k)={1 H"‘Xk%
s(d.k)=|1-) -

The value d represents the threshold density, and I is an indicator function for whether
normalization should take place. As a reminder, only Hyix is provided as a formal scenario level
-5, k, and d are all considered uncertain parameters describing features of human-fire
interaction.
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It is this expression which is multiplied by the expected burned fraction for a given gridcell and
month in order to arrive at a gridcell-level risk estimate.

Risk Exposure Scaling Function
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Figure 2. Exposure scaling function for different parameter values

2.3. Aggregate Relative Risk to Address Model Bias and Variance

Both the model for wildfire burned area and the growth model for allocation of residences are
likely subject to bias and variance, the statistical terms referring to the size of systematic and
random error, respectively. While these problems of bias and variance suggest that we should
not place a great deal of confidence in the particular estimated values, we can arrive at still-
useful estimates of another form, ones in which we can place more confidence. First, by
aggregating the gridcell-level risk to larger geographical regions, we cancel out much of the

15



random variation. Second, if we assume that the bias in the model is approximately
proportional to the true model, then this bias will largely cancel when comparing aggregate risk
estimates relative to a baseline risk. In order to capitalize on this increase in accuracy, we take as
our primary outputs of interest the aggregate relative risk ratios over all of California.
Specifically:

z pgc(SvT)>< E(A)gc X ch(S’T)

gccCA
RR.A

TS Py (Sor To) X E(A) 4o % X oo (S To)

gccCA

That is, we compare the risk in a given scenario S and time period T to the risk in a baseline
(historical) scenario, with both calculated under a common set of assumptions.

2.4. Supplementary lllustrative Impacts

We consider two additional forms of impacts that provide more detail of the impacts, with the
tradeoff that they are more strongly affected by uncertainties. The first is an illustrative display
of statewide risk distributions at the 1/8 degree level. This output format requires no additional
calculations —we merely retain the distributions over the state calculated for each gridcell,
although the variance-stabilizing effect of aggregating to the state level is then lost.

The second presentation involves estimating monetary impacts associated with statewide fire
risks. This requires supplementing our risk model above with additional assumptions in order
to arrive at measures of expected value lost. Such a technique was described in Westerling and
Bryant (2008), and requires assumptions about housing value and the expected fraction of
housing value lost given a housing unit is lost to a wildfire.

For the estimation of housing value, we use year 2000 housing values scaled by the average
10-year increase in statewide inflation-adjusted average housing cost from 1940 to 2000. This is
approximately 38 percent (US Census, 2009).

The expected fraction of housing value lost given a house is burned is referred to as the
“improved fraction” —this is not equal to 1 because a property retains at least some land value
even if the home is lost. Our estimates will be directly proportional to this ratio, so exploration
of sensitivity to this value is trivial. Therefore, for this study we simply use .5, the median value
utilized by Westerling and Bryant (2008).

Formally, the expected damages function is:

E(damage),. =V x I xRISK

Where V is the housing value, and [ is the improved ratio (.5). It is recognized that all of the
above factors will in reality be highly property dependent. However, modeling this greater
detail decades into the future would be shrouded in such uncertainty that we chose merely to
consider illustrative values in this analysis.
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2.5. Nominal Calibration Exercises

When model parameters are unknown, it is common to estimate them by finding parameter
combinations that generate model behavior consistent with observed data or historical
experience. Because there are often multiple combinations of parameters that lead to matching
of historical output, successful calibration does not necessarily guarantee the model will predict
well when tested outside the period of calibration. However, in our case we can use very basic
calibration techniques not to completely restrict our parameters sample, but to provide a
reference within which our broader range of uncertainties is explored.

The data we calibrate to is the California Department of Forestry’s data on annual structures
lost, from 1989 to 2006 (CDF, 2009). Our calibration technique is to fit a linear time trend and
estimate 95% confidence intervals around a prediction for the year 2000, and identify which
parameter combinations we sampled lead to housing losses within those bounds. Applying this
technique, we find a 95% confidence interval on Year 2000 structures lost of 150 to 1501. Under
the assumption that all structures lost are homes (discussed below), we find the following risk
parameter combinations are consistent with this range:

Threshold urban density (d) =147 and k = 1 and no normalization
Threshold urban density (d) =147 and k = .333 and no normalization
Threshold urban density (d) = 1000 and k =.333 and no normalization

We found that no parameter combination that included normalization and no parameter
combination that included a exposure scaling coefficient (‘kval’) of 3 led to values within even
the 99 percent confidence intervals around the year 2000, so we excluded those from our
analysis. Our results are then presented in following forms: Our maximal bounds arise from
considering as our input space the outer product of parameter values that were plausible
individually, while our calibrated cases include only those parameter combinations that
actually led to consistent year 2000 values, which we provide for reference. It turns out that our
calibration parameter combinations include the lowest bound, so in this case there is no
difference between lower calibrated bound and minimum outputs of our uncertainty
combinations. The upper bound case not considered as part of the calibrated set is k=1
simultaneously paired with a density threshold of 1000. The relative sensitivity of all the fire-
probability uncertainties was much smaller, so all combination of those are included.

Clearly this a very simple first-order calibration exercise with several limitations. First, we
make two assumptions regarding the data: One is that all structures lost are housing units,
(which biases our results upwards), and one is that all housing units lost fall within CDF
jurisdiction (which biases our results downward). These opposite biases should partially cancel
each other, but we do not know with which side of zero the net effect lies. Another key issue is
that we applied the calibration after our combinations of uncertain parameters were chosen, so
that our sampling was not a search process to probe the boundaries of plausible parameters. In
reality, many parameter combinations would likely lead to year 2000 values consistent with the
damage estimates of our model, but different parameter combinations may cause the model to
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behave differently farther out in the future, even though they match in historical periods.
Future work will explore these implications in more detail.

3.0 Results

3.1. Overall Impacts

Our overall results are captured in the box and whisker plot of Figure 3. The ranges displayed
in this plot are contingent on year and emissions scenario, but otherwise all other variables are
treated as uncertain, and their variation contributes to the range of estimates for each climate
scenario. The variation is due to our pre-specified non-random experimental design over the
uncertainties, rather than arising from some probability distribution. Therefore, statistical
inferences related to the differences between the resulting distributions should be avoided.

We see that aggregate statewide risk increases with each time period under both emissions
scenarios. Additionally, we can see that the effect of different emissions scenarios is nearly
indistinguishable through mid century, but that by the 30-year period! centered around 2085,
the SRES A2 emissions scenario displays noticeably higher risk of property losses due to
wildfire as compared to the B1 scenario.

! Most scenario analysis for this series of reports reference the 30 year periods 2005-2034, 2035-2064, and
2070-2099. Our spatial housing distributions were available in 10-year increments only, and as these form
the core of the estimates for value at risk, they are averaged over the 31 year periods extending one year
beyond each of the “standard” periods. The probabilities and expected burn areas are from time averages
over the original 30 year periods.
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Changes in Statewide Residential Wildfire Risk
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Figure 3. Changes in wildfire risk to households, by time period and emissions scenario

The minimum and maximum values associated with Figure 3 are summarized in Table 2, along
with the lower and upper estimates found when applying only the Y2K-consistent parameters.
While we discourage taking great stock in the precise values presented, the current model and
assumptions used suggest California could experience anywhere between a 61 to 715 percent
increase in aggregate fire risk by the end of the century, with a tripling or even quadrupling of
fire risk appearing quite plausible by mid-century, under either climate scenario. It can be seen
that the ranges on the box-and-whisker plot do extend quite far, especially in 2085. However,
the fact that none of the 80 plausible combinations of uncertain parameters yielded a relative
risk ratio lower than 1.611 by 2085 suggests we can be reasonably confident the risk will
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increase substantially, under this particular growth scenario and assuming no drastic
improvements in fire protection ability. The growth scenario we utilize does assume a near
doubling of population from 2000 to 2100, thus much of the risk increase can be explained by
the new population—but the remainder is due to a combination of climate-induced change, and
potential changes in growth patterns that create larger exposed value per capita.

Table 2. Relative risk ratios by period. The ‘Min’ and ‘Max’ columns represent the bounds of
cases we explored. The ‘Min’ and ‘Upper’ columns represent the bounds from parameter
combinations consistent with Year 2000 damage estimates.

Summary Statistics for Aggregate Relative Risk
Min  Upper  Max Min - Upper  Max Min - Upper  Max
SRESAZ | 112 183 200 183 414 414 206 B82 815
SRES B1 114 199 217 179 407 407 161 542 £33
2005-2035 2035-2065 2070-2100
3.2. lllustrative Spatial Impacts

Figure 4 displays the spatial distribution of residential wildfire risk throughout the state for the
period centered around 2085, using two different climate models and two different climate
scenarios. The color scale codes the expected damages in terms of expected annual structures
lost, by gridcell. The patterns are similar across the state regardless of model and climate
scenario, though it can be seen that for a given model, the A2 scenario shows greater orange
and red areas of high risk as compared to the B1 scenario.

These maps demonstrate graphically the important relationship between population and risk,
with high risk areas clustering around population centers and the development in the Sierra
Nevada foothills. This is a reflection of multiple factors, including population’s influence on
wildfire itself and the fact that population correlates with structures (homes) exposed to
wildfire, as well as the effects of climate on wildfire. While they are assumed to do so here,
neither the relationship between population and fire nor the relationship between population
and exposed structures must stay fixed through time, which implies a potentially large role for
policies to mitigate residential wildfire risk, both through reducing ignitions, and also through
better protection of homes. In addition, because we employed a single base-case growth
scenario that lies between the population and development that would be consistent with the
SRES A2 and B1 storylines, the differences between modeled risks for the A2 and B1 scenarios
(Figure 4) are less than they should otherwise be if we assume consistency between California’s
development narrative and that of the world. That is, the effects on our relative risk measure of
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the greater burned areas in the A2 scenarios would be compounded by greater population
growth and more sprawl, and vice versa for the B1 scenarios. The analysis reported here will be
extended in the near future to incorporate new ICLUS growth scenarios compatible with the A2
and B1 storylines.
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Figure 4. Annual Residential Wildfire Risk in 2085 for A2 and B1 expressed as the mean number of
lost homes, for two different climate models.
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3.3. lllustrative Monetary Impacts

Table 3 displays example monetary impacts derived using the methodology described in
Section 2.4, using the base year 2000 value of $211,500. Each value in the table represents a
plausible monetary impact (in billions of 2000 $US) due to lost home value in the center year of
each period (i.e., 2020, 2050, and 2085). We emphasize that the particular values are highly
speculative. Even though the ranges in any given year are already fairly wide, there are still
many factors we do not consider that could strongly affect the results. These include deviation
from the population trajectory that we utilize, as well as different housing value trajectories, the
impact of local variation in housing prices, and the deployment of technologies for better
protecting homes in the face of wildfire, and changes in fire severity. Nevertheless, we can see
from this chart that average annual damages on the order of billions of dollars are quite plausible
beginning mid-century. In general, the higher emissions A2 scenario seems to allow for
potentially worse outcomes, though the difference is slight in any given time period. It should
also be noted that the maximum values shown are associated with parameter combinations that
were outside the year 2000 range, and would require a somewhat implausible worsening of
effective fire protection techniques, though sprawling growth patterns and changing fire
regimes could have this effect.

Table 3. Plausible estimates for aggregate average annual monetary damages summed
across the State of California. The ‘Min’ and ‘Max’ columns represent the bounds of cases
we explored. The ‘Min’ and ‘Upper’ columns represent the bounds from parameter
combinations consistent with Year 2000 damage estimates.

Summary Statistics for Aggregate Example Damages

Min  Upper Max Min  Upper Max Min  Upper Max

SRES AY oos0 o048 24 o220 23 13 oe3 14 a0

SRES B 0047 045 2B 021 25 13 053 N B2
2005-2035 2035-2065 2070-2100

Figures are in billions of undiscounted Year 2000 dollars and represent possible
monetary impacts in a representative year during each period.

3.4. Discussion of Uncertainties and Sources of Error

Our model of fire risk is subject to a multitude of uncertainties. These include those
uncertainties that affect the modeled wildfire burned areas used as inputs, and additional
uncertainties about how households distributed on the landscape are interacted with wildfire
burned area to generate a meaningful measure of risk. As can be seen by referring to Table 2,
these uncertainties have the potential to impact the results by a significant factor, with relative
risks spanning all the way from 1.6 to 8.15 for the period centered around 2085.
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The primary uncertainties explicitly modeled on the exposure side and which contribute to the
variance in our results include the form of the exposure scaling function, and the threshold
household density for considering a pixel too urban to be subject to wildfire. In this modeling
exercise, we do not perform a thorough sensitivity analysis to estimate marginal effects of
changing these uncertain parameters. Rather, our focus is on ensuring we have captured a
reasonably wide range of plausible conditions, and illustrated the impact they may have when
propagated through to our outcome measure of interest. Further work to explore the effect of
these uncertainties in more detail may be warranted if more reliance is to be placed on the
precise numeric outcomes.

While we believe we have adequately addressed the explicitly modeled uncertainties with
respect to the qualitative conclusions of this report, the results generated are also subject to
potential sources of error not explicitly considered in the modeling. In particular, the model of
risk may be insufficient to capture important interactions and hidden costs. For example,
perhaps the decrease in exposure with increasing density comes at sizable increase in
expenditures and risk to firefighters (Headwaters Economics 2008). In general, the magnitude of
systematic errors is diminished by our relative risk measure, but this is not the case if the effects
are significantly nonlinear, or if certain interaction effects qualitatively change over time (for
example, through radically different fire management policies).

Another important source of uncertainty we do not consider is the technological and
management responses to mitigate the damages. Primarily, these responses include the use of
defensible space around homes, combined with home construction technology that is designed
to withstand the presence of wildfire. Many new home construction techniques were
introduced during the twentieth century, and we may assume further innovations throughout
the twenty-first century, although the impact of fire-mitigating technological innovations will
be reduced in proportion to their actual adoption, which may or may not be significant.
Modeling the presence of these technologies in conceptually accurate detail is at present
infeasible, though future study within our current framework could explore the potential
impacts via changes to our exposure scaling function over time. Additionally, the ability of
technology and forest management to mitigate exposed value may also vary geographically
based on fire and vegetation type. While vegetation plays an explicit role in our fire model, its
potential effect on fire severity and thus value lost is not incorporated into our estimates of
exposed value. Both new technologies and the impact of these fire regime changes could be
represented by reducing the area under the exposure scaling function in different time periods
and regions.

4.0 Conclusions
Our modeling exercise demonstrated the following key results:
e Residential wildfire risk increases over time for all climate scenarios.

e The difference between an A2 climate scenario and a B1 climate scenario is minimal
through mid-century, but some differences emerge in the period 2070-2100, with the A2
scenario leading to approximately 20-30 percent higher risk of property losses from fire.
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In addition, our particular modeling approach and assumptions led to the following secondary
findings, which should be interpreted with greater caution due to their greater sensitivity to the
specifics of the modeling process:

e A tripling and even quadrupling of residential wildfire risk is quite plausible by mid-
century, with even greater increases by the end of the century.

e The general spatial distribution of fire risk is mostly independent of climate scenarios,
though most areas see higher risks under an A2 scenario. In addition, the very strong
correlation between risk and population implies a large role for mitigation of risk
through policies affecting ignitions of wildfires and the vulnerability of homes.

e The average annual cost associated with homes lost to wildfire could easily be in the
billions of dollars by mid-century (in undiscounted year 2000 dollars), and under our
assumptions, will almost always be at least in the tens of millions of dollars.

All of our findings, especially those dealing with absolute numeric estimates (rather than
comparisons between scenarios), should be taken as illustrations of plausible futures under
various sets of consistent assumptions. They are not predictions, and they are contingent on one
particular growth scenario and assumptions of constant fire-protection technology. However,
we did take many steps to account for some of the uncertainties involved, and these
explorations demonstrated robustness in the key findings, which should provide some
confidence that they accurately capture the nature of climate change’s impact on the residential
wildfire risk in California. Lastly, it should be remembered that residential wildfire impacts
represent only a fraction of the impacts that climate-induced changes in wildfire patterns may
have on California over the remainder of this century.
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Appendix: Specification of Uncertainties

Our model is subject to the uncertainties of both the fire probability model as well as the
exposure estimation model. Some of these were described above, but we enumerate them
completely here, with some additional discussion. Here we take the climate scenario itself (A2
or B1) as well as the spatially explicit growth scenario as given, and discuss uncertainties in
form and parameter values contingent on the climate and growth scenario. Except where noted,
every combination of these parameters was sampled (a full factorial design), leading to an
initial sampling of 72 combinations for most periods, though we eventually ruled out some
parameter combinations as entirely unrealistic.

Non-growth related uncertainties:

Climate-based vegetation migration: A binary variable indicating whether or not vegetation
fractions are allowed to adapt over time to changing fire and climate conditions.

Climate model: Given emissions scenarios produce different changes in climate depending on the
climate model that relates emissions to their climate impacts. This analysis uses the output of
three different models: GFDL CM2.1, NCAR PCM3, and CNRM-CM3.

Uncertainties affecting both fire probabilities and exposure estimates:

Threshold urban density: What value of housing density, in units of household per square
kilometer, is considered the threshold for a pixel being too dense to be subject to wildfires? In
this analysis we use 147 and 1000, which are based on the upper and lower bounds for
suburban density as defined in the ICLUS scenarios.

Growth-vegetation interaction: An ordered indicator for the method by which new residential
growth affects vegetation fraction existing in a given gridcell. There are three options, which
either minimize or maximize vegetation fraction remaining in a gridcell given new growth, and
an option for allotting new growth proportionally to the area fraction already occupied by
vegetation. Model results proved largely insensitive to this variable, so results presented here
use only the proportional option.

All of the above are discussed in more detail in the companion Westerling et al. report
(Westerling et al. 2009). Discussion of the climate and adaptation models can be found in text,
while the threshold values and growth-vegetation interactions are thoroughly discussed in
Appendix 1 of that report.

Uncertainties affecting exposure estimates only:

Concavity of exposure scaling function: The exposure scaling function scales the number of
households in a pixel down to the number considered at risk for wildfire damages, as a function
of density. This is described thoroughly in Section 2.2 —we consider three parameter values (1/3,
1, and 3), each leading to different concavities in the exposure scaling function. As discussed in



section 2.5, we find that the value of 3 is entirely unrealistic, so we do not consider that
parameter combination in presenting our results.

Normalization of the exposure scaling function: The exposure scaling function can be interpreted as
capturing two different effects: One is the simple effect that wildfire is not likely to spread
beyond a certain “depth” into a group of houses (e.g., beyond 3 “rows”)—due to a combination
of suppression efforts and physical interactions between fire, structures and open space like
roads—though inter-structure spread is a documented phenomenon (Institute for Business &
Home Safety 2008). The scaling also captures the effect that the probability of a fire reaching a
particular pixel is diminished in some proportion to the number of households in that pixel, via
suppression efforts and pre-fire management efforts such as the creation of defensible space.
However, this latter effect is also captured to some degree by inclusion of the population
variable in the fire probability model. This means that if the relative magnitude of the first effect
is small compared to the latter effect, the exposure scaling function will over-estimate the
reduction in risk. If the second effect was perfectly accounted for in the fire probability model, it
would be appropriate to additionally rescale the exposure function so that total probability was
preserved. This is done by dividing by the area under the scaling curve (which will be less than
one). It is unlikely that the true behavior is modeled at either extreme, so we consider both, and
take rescaling as a binary uncertainty in the model. In reality, this does not need to be a binary
variable, and future work should consider values between zero and one. Our calibration
exercises also found that normalizing the scaling function led to unrealistically high values for
the year 2000, so we did not utilize that parameter setting in futher analysis.
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